Relating Grain-Boundary Complexion to Grain-Boundary Kinetics I: Calcia-Doped Alumina

نویسندگان

  • Shen J. Dillon
  • Martin P. Harmer
چکیده

Because of the complex nature of internal interfaces it has been a continual challenge to link the grain growth behavior of alumina (especially the onset of abnormal grain growth) to the internal interface structure and chemistry, and the associated atomic transport rate. The present work considers the problem of normal and abnormal grain growth development in calcia-doped alumina, a system noted for its complex abnormal grain growth behavior, in terms of the new concept of interface complexions. Calcia-doped alumina was shown to exhibit four distinct grain-boundary complexions in the temperature range of 13251–18701C. All four complexions may coexist at a single temperature. Each complexion is associated with a characteristic grain-boundary mobility, all of which enhances the grain growth kinetics relative to undoped alumina. It was found that the activation energy for the different complexions (normal and abnormal grain growth) was approximately the same in each case (B450 kJ/mol). This is discussed in the context of interfaceversus diffusion-controlled grain growth, and it is concluded that normal and abnormal grain growth in this system is diffusion controlled.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating Grain Boundary Complexion to Grain Boundary Kinetics II: Silica-Doped Alumina

This second paper in a series describes the relationship between grain growth kinetics and grain boundary complexions in silicadoped alumina. Dense high-purity silica-doped alumina samples were annealed for various times in the temperature range of 13001 and 19001C and their grain growth behavior was quantified. Four different grain boundary complexions were observed in silica-doped alumina, al...

متن کامل

Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions

The grain boundary character distributions of selected doped aluminas were measured from normal and abnormal populations. The relative energies of the A-, C-, and Rplanes of undoped alumina were also measured. There is an inverse relationship between the population of grain boundaries and the relative energies of grain boundary planes in undoped alumina. This relationship is found to be qualita...

متن کامل

Influence of Y and La Additions on Grain Growth and the Grain-Boundary Character Distribution of Alumina

Grain-boundary character distributions (GBCDs) were determined for spark plasma sintered Yand La-doped aluminas prepared at temperatures between 1450°C and 1600°C. La doping leads to grain boundaries that adopt (0001) orientations 3.7 times more frequently than expected in a random distribution, whereas the Y-doped microstructures are more equiaxed. At 1500°C, some of the boundaries in the Y-do...

متن کامل

Influence of interface energies on solute partitioning mechanisms in doped aluminas

The experiments described in this paper have been designed to understand how particular dopants in alumina (Ca, Mg, Si, and Y) affect microstructural development through the energetics of their associated precipitates. Specifically, the role of the interphase boundary energy and precipitation activation energy are considered to be in competition with grain boundary complexion (disorder) transit...

متن کامل

Comment on ‘‘Effect of Interface Structure on the Microstructural Evolution of Ceramics’’

THE following comments are directed to the sections (2) ‘‘revisit to the grain growth problems in alumina’’ and (3) grain growth without a liquid phase in the article of concern. The purpose of this comment is to challenge the authors’ assertions and refute the following arguments, namely, first that ‘‘MgO can be considered a very effective grain growth promoter in the sintering of alumina,’’ s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008